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Abstract

In this paper, we discuss a general strategy to construct vector coherent
states of the Gazeau–Klauder type and we use them to build up examples of
isospectral Hamiltonians. For that we use a general strategy recently proposed
by the author, which extends well-known facts on intertwining operators. We
also discuss the possibility of constructing non-isospectral Hamiltonians with
related eigenstates.

PACS number: 03.65.Fd

1. Introduction

In a recent paper [1], we have proposed a new procedure which gives rise, given a few
ingredients, to a Hamiltonian h2 which has the same spectrum of a given Hamiltonian h1

and whose respective eigenstates are related by a given intertwining operator. These results
extend what was discussed in the previous literature on this subject [2], and have the advantage
of being a constructive procedure: while in [2] the existence of h1, h2 and of an operator x
satisfying the rule h1x = xh2 is assumed, in [1] we explicitly construct h2 from h1 and x in
such a way that h2 satisfies a weak form of the intertwining condition h1x = xh2. Moreover,
h2 has the same spectrum of h1 and the eigenvectors are related in a standard way, see [1]
and section 3. It is well known that this procedure is strongly related to, and actually extends,
the supersymmetric quantum mechanics widely discussed in the past few years, see [3, 4] for
interesting reviews.

In [1] we have considered the relation between this intertwining operator technique and
vector Gazeau–Klauder-like coherent states (VGKCS), going in one direction. Here we
continue this analysis showing that the opposite can be done. Namely, we will first introduce
two different classes of VGKCS. Their properties are discussed in section 2. In section 3
we will show that, starting from these states, several isospectral Hamiltonians can be defined.
Many examples are discussed, and some of them remind us of supersymmetric quantum
mechanics. In section 4, we discuss the possibility of using the same strategy proposed
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in [1] to construct non-isospectral Hamiltonians whose eigenvectors are related as in [1–4].
Section 5 contains our conclusions and future plans.

2. Vector coherent states

In this section we extend the framework discussed in [1] and used there to construct a certain
type of coherent states (CS). As we have discussed in [1], there is not a unique way to do
this. In contrast, in the literature several possibilities are discussed, see [5–11] and references
therein. These differences arise mainly because of the non-uniqueness of the definition of
what a CS should be. To be more explicit, while some author defines them as eigenvectors
of some sort of annihilation operators [5], someone else appears more interested in getting a
resolution of the identity [6]. Also the domain of the CS plays an important role: while for
standard CS the domain is a (subset) of C, for vector CS (VCS) the domain is a suitable set of
matrices [10, 11]. It should also be mentioned that VCS were introduced in a different context
in [12] in connection with group representation theory.

Here, as in [1], we adopt a mixed point of view, showing how to generalize the Gazeau–
Klauder (GK) scheme [6], to the Ali and coworker settings [10], getting VCS which still share
with the GK ones most of their features. To keep the paper self-contained we first briefly
recall how these states are defined and which are their main properties. These CS, labeled
by two parameters J > 0 and γ ∈ R, can be written in terms of the orthonormal basis of a
self-adjoint operator H = H †, |n〉, as

|J, γ 〉 = N(J )−1
∞∑

n=0

J n/2 e−iεnγ

√
ρn

|n〉, (2.1)

where 0 = ε0 < ε1 < ε2 < · · · , ρn = εn! := ε1 · · · εn, ε0! = 1,H |n〉 = ωεn|n〉 and
N(J )2 = ∑∞

n=0
J n

ρn
, which converges for 0 � J < R,R = limn εn (which could be infinite).

These states are temporarily stable: e−iHt |J, γ 〉 = |J, γ + ωt〉,∀ t ∈ R, and continuous: if
(J, γ ) → (J0, γ0) then ‖|J, γ 〉 − |J0, γ0〉‖ → 0. Moreover they satisfy the action identity:
〈J, γ |H |J, γ 〉 = Jω and a resolution of the identity in the following sense: if there exists a
non-negative function, ρ(u), such that

∫ R

0 ρ(u)un du = ρn for all n � 0 then, introducing a

measure dν(J, γ ) = N(J )2ρ(J ) dJ dν(γ ), with
∫

R
· · · dν(γ ) = lim�→∞ 1

2�

∫ �

−�
· · · dγ , the

following holds:∫
CR

dν(J, γ )|J, γ 〉〈J, γ | =
∫ R

0
N(J )2ρ(J ) dJ

∫
R

dν(γ )|J, γ 〉〈J, γ | = 11, (2.2)

where 11 is the identity operator. The states |J, γ 〉 are eigenstates of the following γ -depending
annihilation-like operator aγ defined on |n〉 as follows:

aγ |n >=
{

0, if n = 0,√
εn ei(εn−εn−1)γ |n − 1〉, if n > 0,

(2.3)

whose adjoint acts as a†
γ |n〉 = √

εn+1 e−i(εn+1−εn)γ |n + 1〉. We easily deduce that aγ |J, γ 〉 =√
J |J, γ 〉, even if |J, γ 〉 is not an eigenstate of aγ ′ if γ �= γ ′.

Let us now consider two self-adjoint Hamiltonians h1 and h2, with eigenvalues ε
(j)
n and

eigenvectors ϕ
(j)
n :

hjϕ
(j)
n = ε(j)

n ϕ(j)
n , j = 1, 2, n = 0, 1, 2, . . . . (2.4)

We assume that 0 = ε
(j)

0 < ε
(j)

1 < ε
(j)

2 < · · · , j = 1, 2. We define

	̂(b)
n =

(
ϕ̂(1)

n

0

)
, 	̂(f )

n =
(

0
ϕ̂(2)

n

)
, (2.5)
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where we use, following the same notation as in [1, 7] and with a little abuse of language, ‘b’
for bosons and ‘f’ for fermions. The set F = {

	̂
(f )
n , 	̂(b)

n , n � 0
}

forms an orthonormal basis
for the Hilbert space HSUSY := C

2 ⊗ H, whose scalar product is defined as follows: given

� = (
γ (b)

γ (f )

)
and �̃ = (

γ̃ (b)

γ̃ (f )

)
, we put 〈�, �̃〉SUSY = 〈γ (b), γ̃ (b)〉 + 〈γ (f ), γ̃ (f )〉, where 〈, 〉 is the

scalar product in H.
Let now J1 and J2 be two positive quantities, J = (J1, J2) and γ a real variable. Let

further δ be a strictly positive parameter. Extending what we have done in [1] we put

	δ(J , γ ) := 1√
N(J )

∞∑
n=0

⎛
⎝ 1√

ε
(1)
n !

J
n/2
1 e−i(ε(1)

n +δ)γ 	̂(b)
n +

1√
ε

(2)
n !

J
n/2
2 ei(ε(2)

n +δ)γ 	̂(f )
n

⎞
⎠ . (2.6)

With respect to what was done in [1] here we are doubling the set of eigenvalues, in the sense
that we are not assuming, as is usually done in the literature so far, that we are dealing with two
different operators with the same spectra. Hence h1 and h2 need not be related, in particular,
as in SUSY quantum mechanics or in the ordinary theory of intertwining operators.

The normalization constant N(J ) can easily be found requiring as usual that
〈	δ(J , γ ),	δ(J , γ )〉SUSY = 1 for all J , γ and δ. Let us define Mj(J ) := ∑∞

k=0
J k

ε
(j)

k !
,

which converges for 0 � J < Rj ,Rj = limn ε
(j)
n , which is assumed to exist (but it could be

infinite), j = 1, 2. Then we deduce that

N(J ) = M1(J1) + M2(J2). (2.7)

It may be worth remarking that, with respect to [1], we have introduced a minor difference
in the normalization which, however, does not affect the main results and conclusions. If we
now introduce the operator

H =
(

h1 0
0 h2

)
acting on HSUSY, we find that the following action identity holds:

〈	δ(J , γ ),H	δ(J , γ )〉SUSY = J1M1(J1) + J2M2(J2)

M1(J1) + M2(J2)
. (2.8)

As for the temporal stability, let us define the matrix

Vδ(t) =
(

e−i(h1+δ)t 0
0 ei(h2+δ)t

)
,

then

Vδ(t)	δ(J , γ ) = 	δ(J , γ + t), (2.9)

for each fixed δ. This means that, independently of δ, Vδ(t) leaves invariant the set of the
vectors in (2.6). As we have already discussed in [1], the operator Vδ(t) does not coincide
with e−iHt , and for this reason, calling (2.9) temporal stability is a little abuse of language.
We will show in the following subsection that we can avoid such an abuse introducing an extra
requirement on the spectra of h1 and h2, σ (hj ), j = 1, 2. We leave to the reader to check that
the resolution of the identity can be recovered if we define a measure dν(J , γ ) as follows:
dν(J , γ ) = N(J )ρ1(J1) dJ1ρ2(J2) dJ2 dν(γ ), where ρ1(J ) and ρ2(J ) are two non-negative
functions satisfying the equality

∫ Rj

0 ρj (J )J k dJ = ε
(j)

k !,∀ k � 0. The measure dν(γ ) is
defined as usual, see [6]. With these definitions it is possible to deduce that, for all fixed δ > 0,∫

E
dν(J , γ )|	δ(J , γ )〉〈	δ(J , γ )| = 11SUSY, (2.10)

3
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where E = {(J , γ ) : 0 � J1 < R1, 0 � J2 < R2, γ ∈ R}. As in [1], the role of the positive δ

is crucial. Moreover, the integral above is not uniformly continuous in δ, since, if δ = 0, it is
easy to check that

∫
E dν(J , γ )|	δ(J , γ )〉〈	δ(J , γ )| �= 11SUSY.

Also in this context it is possible to introduce a γ -depending annihilation-like operator.
Let

Aγ 	̂(b)
n =

{
0 if n = 0√

ε
(1)
n ei(ε(1)

n −ε
(1)
n−1)γ 	̂

(b)
n−1 if n � 1

(2.11)

and

Aγ 	̂(f )
n =

{
0 if n = 0√

ε
(2)
n e−i(ε(2)

n −ε
(2)
n−1)γ 	̂

(f )

n−1 if n � 1.
(2.12)

Then the adjoint A†
γ satisfies the following:⎧⎨

⎩A†
γ 	̂(b)

n =
√

ε
(1)
n+1 e−i(ε(1)

n+1−ε
(1)
n )γ 	̂

(b)
n+1

A†
γ 	̂

(f )
n = √

εn+1 ei(ε(2)
n+1−ε

(2)
n )γ 	̂

(f )

n+1.
(2.13)

The states 	δ(J , γ ) are eigenstates of the operator Aγ in the following sense:

Aγ 	δ(J , γ ) = J 1/2	δ(J , γ ) (2.14)

for all fixed δ, where J 1/2 is the matrix J 1/2 = (√
J1 0
0

√
J2

)
. Hence, the vectors 	δ(J , γ ) can be

safely called coherent states.

2.1. More assumptions . . . more results

The presence of the parameter δ in definition (2.6) of the VCS, and of the related operators,
may look a bit unnatural, since it is an ad hoc quantity which is used mainly to recover a
resolution of the identity. Here we will show that, under a reasonable assumption of the
eigenvalues of the two Hamiltonians, no δ is needed.

Once again we consider two Hamiltonians h1 and h2 with eigenvalues ε
(j)
n and eigenvectors

ϕ
(j)
n : hjϕ

(j)
n = ε

(j)
n ϕ

(j)
n , j = 1, 2, n = 0, 1, 2, . . .. In contrast to what we have done before,

we assume now that 0 < ε
(j)

0 < ε
(j)

1 < ε
(j)

2 < · · · , j = 1, 2 and we introduce the following.

Definition 1. h1 and h2 have essentially disjoint spectra (EDS) if ε(1)
n �= ε(2)

m , for all n and m
in N0.

Of course, this requirement is not compatible with what has been required previously,
namely that 0 = ε

(1)
0 = ε

(2)
0 , so that this requirement has been removed here.

If h1 and h2 have EDS we can define, using the same notation as before

	(J , γ ) := 1√
Ñ(J )

∞∑
n=0

⎛
⎝ 1√

ε̃
(1)
n !

J
n/2
1 e−iε(1)

n γ 	̂(b)
n +

1√
ε̃

(2)
n !

J
n/2
2 e−iε(2)

n γ 	̂(f )
n

⎞
⎠ , (2.15)

where we have introduced ε̃
(j)
n = ε

(j)
n − ε

(j)

0 , j = 1, 2. Hence ε̃
(j)

0 ! = 1 and ε̃
(j)
n ! =(

ε
(j)
n − ε

(j)

0

)(
ε

(j)

n−1 − ε
(j)

0

) · · · (ε(j)

1 − ε
(j)

0

)
. Note that no δ is introduced and, furthermore,

the two exponentials share the same minus sign. This has interesting consequences on the
temporal stability, as we will see in a moment.

4
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The normalization Ñ(J ) can be found as before: let us define M̃j (J ) := ∑∞
k=o

J k

ε̃
(j)

k !
,

which converges for 0 � J < R̃j , R̃j = limn ε̃
(j)
n , which is assumed to exist (but it could be

infinite), j = 1, 2. Then we deduce that

Ñ(J ) = M̃1(J1) + M̃2(J2). (2.16)

Rather than computing 〈	(J , γ ),H	(J , γ )〉SUSY, it is more convenient to introduce a shifted

Hamiltonian Hτ = (h1 0

0 h2

) − (ε
(1)
0 0

0 ε
(2)
0

) =: H − ε0. Then we have Hτ	̂
(b)
n = ε̃(1)

n 	̂(b)
n and

Hτ	̂
(f )
n = ε̃(2)

n 	̂
(f )
n . Hence

〈	(J , γ ),Hτ	(J , γ )〉SUSY = J1M̃1(J1) + J2M̃2(J2)

M̃1(J1) + M̃2(J2)
, (2.17)

which is our version of the action identity.
One of the free benefits that we get using the VCS in (2.15) is that the temporal stability,

which is just a formal formula for the states in (2.6), has now a clear physical interpretation:
because of the definition of H, the time operator e−iHt in HSUSY is the following 2 × 2 matrix:

e−iHt =
(

e−ih1t 0
0 e−ih2t

)
,

and it is an easy exercise to check that

e−iHt	(J , γ ) = 	(J , γ + t), (2.18)

as expected and originally deduced in [6]. The resolution of the identity holds as in the previous
case, but a crucial role is played here from the assumption on the spectra of h1 and h2. More
explicitly, we put dν(J , γ ) = Ñ(J )ρ1(J1) dJ1ρ2(J2) dJ2 dν(γ ), where ρ1(J ) and ρ2(J ) are

two non-negative functions satisfying the equality
∫ R̃j

0 ρj (J )J k dJ = ε̃
(j)

k !,∀ k � 0, and dν(γ )

is defined as before. Furthermore we put Ẽ = {(J , γ ) : 0 � J1 < R̃1, 0 � J2 < R̃2, γ ∈ R}.
Then we get ∫

Ẽ
dν(J , γ )|	(J , γ )〉〈	(J , γ )| = 11SUSY. (2.19)

It is clear that we have now no problem of continuity, here, since no parameter δ appears here.
This result directly follows from the assumption that h1 and h2 have EDS, and it would not be
true otherwise.

The definitions in (2.11)–(2.13) must be slightly modified in our new context: we put

Ãγ 	̂(b)
n =

{
0 if n = 0√

ε̃
(1)
n ei(ε(1)

n −ε
(1)
n−1)γ 	̂

(b)
n−1 if n � 1

(2.20)

and

Ãγ 	̂(f )
n =

{
0 if n = 0√

ε̃
(2)
n ei(ε(2)

n −ε
(2)
n−1)γ 	̂

(f )

n−1 if n � 1.
(2.21)

Then the adjoint A†
γ satisfies the following:⎧⎪⎨

⎪⎩
Ã†

γ 	̂(b)
n =

√
ε̃

(1)
n+1 e−i(ε(1)

n+1−ε
(1)
n )γ 	̂

(b)
n+1

Ã†
γ 	̂

(f )
n =

√
ε̃

(2)
n+1 e−i(ε(2)

n+1−ε
(2)
n )γ 	̂

(f )

n+1.

(2.22)

Again we get

Ãγ 	(J , γ ) = J 1/2	(J , γ ). (2.23)

5
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In other words, we can get rid of δ as far as h1 and h2 have EDS, recovering exactly the
same properties as before. Furthermore, it is just an exercise to extend these results to a
family of N Hamiltonians hj , j = 1, 2, . . . , N , with EDS (i.e., with all their eigenvalues
mutually different). In this case, clearly, we can construct VGKCS in the Hilbert space
ĤSUSY := C

N ⊗ H. The details of this construction are left to the reader since they do not
differ significantly from what we have done here.

3. Isospectral Hamiltonians arising from the VCS

In this section we will construct several examples of intertwining operators and their associated
Hamiltonians using as a main ingredient the operator Ãγ introduced in (2.20), (2.21), and its
adjoint. In a sense we are here reversing the procedure proposed in [1] where the coherent states
were constructed from intertwining operators. Here we have first introduced our VGKCS, and
now we will use them to construct pairs of isospectral Hamiltonians.

In [1] we have shown that if h is a self-adjoint Hamiltonian on the Hilbert spaceH, h = h†,
whose normalized eigenvectors, ϕ̂n, satisfy the equation: hϕ̂n = εnϕ̂n, n ∈ N0 := N ∪ {0},
and if there exists an operator x such that [xx†, h] = 0, and N1 := x†x is invertible
then, calling H := N−1

1 (x†hx), and n = x†ϕ̂n the following conditions are satisfied:
[α] H = H †, [β] x†(xH − hx) = 0 and [γ ] if n �= 0 then Hn = εnn. As we have
discussed in the introduction, this method is an improvement with respect to the previously
existing literature since we can explicitly construct a new Hamiltonian, H, which is isospectral
to h and whose eigenvectors are related to those of h. Now we will show that, working in the
assumptions of section 2.1, it is possible to produce pairs of isospectral Hamiltonians acting on
HSUSY. For that, and also in view of extension to higher dimensional systems, it is convenient
to modify a little bit the notation used so far, avoiding the use of the suffixes (b) and (f ). Let
then h1 and h2 be two self-adjoint Hamiltonians with EDS, and let

{
ϕ

(j)
n , n ∈ N0, j = 1, 2

}
be their related eigenvectors: hjϕ

(j)
n = ε

(j)
n ϕ

(j)
n , n = 0, 1, 2, . . . and j = 1, 2. We assume that

0 < ε
(j)

0 < ε
(j)

1 < ε
(j)

2 < · · · , j = 1, 2, and we define

ε̃(j)
n = ε(j)

n − ε
(j)

0 , so that ε̃
(j)

0 ! = 1, ε̃(j)
n ! = (

ε(j)
n − ε

(j)

0

) · · · (ε(j)

1 − ε
(j)

0

)
,

if n > 0.

Further we introduce, as in the previous section,

	̂(1)
n =

(
ϕ̂(1)

n

0

)
, 	̂(2)

n =
(

0
ϕ̂(2)

n

)
, (3.1)

and

	(J , γ ) := 1√
Ñ(J )

∞∑
n=0

⎛
⎝ 1√

ε̃
(1)
n !

J
n/2
1 e−iε(1)

n γ 	̂(1)
n +

1√
ε̃

(2)
n !

J
n/2
2 e−iε(2)

n γ 	̂(2)
n

⎞
⎠ . (3.2)

As we have shown previously these states are VCS, satisfying all the properties which are
usually required in the Gazeau–Klauder settings. In particular, what we need now is the fact
that they are eigenstates of an annihilation-like operator, see (2.20), which we now simply
define as

Bγ 	̂(j)
n =

√
ε̃

(j)
n ei(ε(j)

n −ε
(j)

n−1)γ 	̂
(j)

n−1, (3.3)

j = 1, 2, n ∈ N0, understanding that, since ε̃
(j)

0 = 0 for j = 1, 2, the action of Bγ on 	̂
(j)

0
returns the zero vector. The adjoint of Bγ is

B†
γ 	̂(j)

n =
√

ε̃
(j)

n+1 e−i(ε(j)

n+1−ε
(j)
n )γ 	̂

(j)

n+1, (3.4)

6
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j = 1, 2. As we have already seen, Bγ 	(J , γ ) = J 1/2	(J , γ ): for each fixed γ the
vector 	(J , γ ) is an eigenstate of the operator Bγ . It should be noted however that
Bγ 	(J , γ ′) �= J 1/2	(J , γ ′). These annihilation-like operators will be used to construct
our examples.

Remark 1. Of course the explicit expression for Bγ depends on the vectors 	̂
(j)
n and on the

sequences ε
(j)
n , j = 1, 2. A simple example can be constructed starting from two harmonic

oscillators: let h1 = ω1a
†
1a1 and h2 = ω2a

†
2a2, with ωj > 0, j = 1, 2, and

[
ai, a

†
j

] = δi,j 11.

Hence ϕ
(j)
n = 1√

n!

(
a
†
j

)n
ϕ

(j)

0 , where ajϕ
(j)

0 = 0, and ε
(j)
n = ωjn, j = 1, 2 and n ∈ N0. Then

	̂(1)
n and 	̂(2)

n can easily be found from (3.1) and

Bγ =
(√

ω1 eiω1γ a1 0
0

√
ω2 eiω2γ a2

)
.

Example 1. Let us define the self-adjoint operator hγ := B†
γ Bγ on HSUSY. The set

F = {
	̂

(j)
n , n � 0, j = 1, 2

}
is an orthonormal set of eigenvectors of hγ : hγ 	̂

(j)
n =

ε̃
(j)
n 	̂

(j)
n , n ∈ N0 and j = 1, 2. Hence the operator hγ turns out to be independent of γ . For

this reason, quite often from now on, we will call it simply h. Let us now take x → xγ := B†
γ .

It is clear that
[
h, xγ x†

γ

] = [
B†

γ Bγ , B†
γ Bγ

] = 0. Furthermore, since N1	̂
(j)
n = ε̃

(j)

n+1	̂
(j)
n , and

since ε̃
(j)

n+1 > 0 for all n ∈ N0, j = 1, 2, N−1
1 exists and is defined on the orthonormal basis

F of HSUSY as N−1
1 	̂

(j)
n = (

ε̃
(j)

n+1

)−1
	̂

(j)
n . Then all the requirements in [1] are satisfied, and

we find that the operator Hγ = N−1
1

(
x†

γ hxγ

) = Bγ B†
γ is isospectral to h. Again Hγ does not

depend on γ . Its eigenvectors are 
(j)
n = x†

γ 	̂
(j)
n = Bγ 	̂

(j)
n , which are different from zero if

n � 1. This example is nothing but ordinary SUSY quantum mechanics.

Example 2. Let us again define hγ → h := B†
γ Bγ . We take xγ := (

B†
γ

)2
. Once again we

can check that the operator N1 = B2
γ

(
B†

γ

)2
can be inverted, since N1	̂

(j)
n = ε̃

(j)

n+1ε̃
(j)

n+2	̂
(j)
n ,

noting that ε̃
(j)

n+1ε̃
(j)

n+2 > 0 for all n ∈ N0 and for j = 1, 2. Moreover h commutes with xγ x†
γ :[

h, xγ x†
γ

] = [
B†

γ Bγ ,
(
B†

γ

)2
B2

γ

] = 0. Hence we can produce a second Hamiltonian, Hγ , with

the same set of eigenvalues as h: Hγ = (
B2

γ

(
B†

γ

)2)−1(
B2

γ B†
γ Bγ

(
B†

γ

)2)
. Here a new feature

appears: in all the examples considered in [1], as well as in the example above, the operator
N−1

1 disappears from the final expression of the companion Hamiltonian H of h, since the
operator is always right-multiplied by N1. In the present case, this is not so. Indeed, we
cannot simplify much further the above expression for Hγ , so that N−1

1 appears in the final
result, contrarily to what was suggested in [1]. Nevertheless we can still explicitly check that
the set of vectors 

(j)
n = x†

γ 	̂
(j)
n = B2

γ 	̂
(j)
n , which is different from zero if n � 2, is a set of

eigenvectors of Hγ , with the same eigenvalues of h, ε̃
(j)
n . Indeed we find

Hγ

(
B2

γ 	̂(j)
n

) = ε̃(j)
n

(
B2

γ 	̂(j)
n

)
,

for all n � 2 and j = 1, 2.

Example 3. The above examples can be further generalized to other powers of B†
γ in xγ . In

particular, if we take h := B†
γ Bγ and xγ := (

B†
γ

)3
, it is easy to check that h commutes with

xγ x†
γ and that N1 = x†

γ xγ is invertible. Then our strategy can be applied and we deduce that the

vectors B3
γ 	

(j)
n , n � 3 and j = 1, 2, are eigenstates of Hγ = (

B3
γ

(
B†

γ

)3)−1(
B3

γ B†
γ Bγ

(
B†

γ

)3)
7
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with the same eigenvalues ε̃
(j)
n as h. The extension to xγ := (

B†
γ

)l
, l � 4, is straightforward

and will not be given here.

Example 4. The same operators Bγ and B†
γ can be used to construct an example of different

kind. Let us take hγ := B†
γ

2
B2

γ and xγ := B†
γ . The eigenstates of h are almost the same as

before. More explicitly we have, for all n � 2, hγ 	
(j)
n = ε̃

(j)
n ε̃

(j)

n−1	
(j)
n . Hence, hγ does not

depend on γ , and can be simply called h. Once again, it is easy to check that h commutes
with xγ x†

γ and that N1 = x†
γ xγ is invertible. In this case Hγ turns out to be the operator

Hγ = B†
γ B2

γ B†
γ , and the eigenstates can be obtained as Bγ 	

(j)
n . The eigenvalues, as always,

are the same as those of h.

Remark 2. We note that all has been discussed in this section can be extended to a set of N
Hamiltonians hj , j = 1, 2, . . . , N with EDS. In this case, the relevant Hilbert space would be
HSUSY = C

N ⊗ H. Furthermore, changing our definitions a little bit, we claim that more or
less the same results could be obtained starting from a set of Hamiltonians even if they do not
have EDS.

We end this section showing the link between the original Hamiltonians h1, h2 and
some of the operators hγ introduced in the examples above. Using the matrix operator Hτ

introduced in the previous section we find that Hτ	̂
(j)
n = ε̃

(j)
n 	̂

(j)
n , and we have already seen

that B†
γ Bγ 	̂

(j)
n = ε̃

(j)
n 	̂

(j)
n . This means that Hτ − B†

γ Bγ is zero on every vector of a basis
of HSUSY, and so Hτ = B†

γ Bγ . This is an explicit example of a general result in functional
analysis which states (but for some mathematical details) that every positive operator T can be
written as T = W †W , for some operator W . We would like to stress that here Bγ cannot just
be taken as the square root of Hτ , since otherwise we would lose one of the main features of
our framework, namely the fact that 	(J , γ ) is an eigenstate of Bγ .

4. Non-isospectral Hamiltonians: is this an extension?

We devote this short section to a possible generalization of what has been done in [1]. We
call it possible because, under suitable conditions, what we are going to discuss here turns
out to be equivalent to the results in [1]. The main idea is to produce, starting from a given
Hamiltonian h, a second operator, H whose spectrum σ(H) is different from σ(h) but whose
eigenstates are related to those of h by means of the usual intertwining operator. As a matter
of fact, this is not an easy task using the standard results on intertwining operators, while
this is just a very simple exercise adopting the strategy in [1]. Indeed, let h be a self-adjoint
Hamiltonian on the Hilbert space H, h = h†, whose normalized eigenvectors, ϕ̂n, satisfy the
equation: hϕ̂n = enϕ̂n, n ∈ N0 := N ∪ {0}. Suppose that there exists an operator x such that
[xx†, h] = 0 and N1 := x†x is invertible. So we are back to the hypotheses of the previous
section. Let further f (x) be a real C∞-function which admits a power series expansion. Since
N−1

1 exists by assumption, we can introduce

H := N−1
1 (x†f (h)x), n = x†ϕ̂n. (4.1)

Here f (h) can be defined, for instance, via functional calculus or, at least on a suitable domain
of vectors, considering its power series expansion. Then the following conditions are satisfied:
[α] H = H †; [β] x†(xH −f (h)x) = 0; [γ ] if n �= 0 then Hn = Enn, with En = f (en).

The proof of these statements does not differ significantly from that given in [1], and will
not be given here. We would like to remark that the Hamiltonians H and h are no longer

8



J. Phys. A: Math. Theor. 42 (2009) 075302 F Bagarello

isospectral. In contrast, choosing f in a clever way, it will turn out that h and H have EDS so
that they could be used in the construction of the VGKCS (2.15).

Remark 3. It may be worth remarking that, as in [1], we could iterate our procedure
constructing an entire family of Hamiltonians with their related eigensystems.

Now we came to the title of this section: is the one proposed here really an extension
of the results in [1]? Or is it just another way to say the same thing? In other words, given
ϕ ∈ H, does the equality

f
(
N−1

1 (x†hx)
)
ϕ = N−1

1 (x†f (h)x)ϕ (4.2)

hold true? If this is the case, then we are taken back to [1]. In contrast, if this is not so, then
the strategy is really new. As a matter of fact, we do not have a final answer to this problem
but many strong indications.

We begin discussing a sufficient condition for (4.2) to be satisfied. Let us now assume
that for l = 0, 1, 2, . . . and for ϕ ∈ H,(

xN−1
1 x†)hlxϕ = hlxϕ. (4.3)

Then, if f (x) admits a power series expansion, (4.2) is satisfied. This can be proven by
a simple direct computation. Moreover, if

[
xN−1

1 x†, h
] = 0, then equation (4.3) is surely

satisfied. So, whenever h commutes with xN−1
1 x†, (4.2) is satisfied. The next step is to check

if, for some reason,
[
xN−1

1 x†, h
] = 0 is always satisfied. Indeed, from our definitions, we

can conclude that, x†[xN−1
1 x†, h

]
x = 0 is certainly true. Now, if the range of the operator

x, Ran(x), is all of H, as it happens if x is invertible, then
[
xN−1

1 x†, h
] = 0. However this

conclusion does not hold if Ran(x) is a proper subset of H, so that nothing can be said about
equation (4.2). Summarizing we have

Proposition 1. Let h be a self-adjoint operator and x be such that [h, xx†] = 0, N1 := x†x
is invertible and Ran(x) = H. Then, if the function f (t) admits a power series expansion,
equality (4.2) holds.

However the examples we are going to discuss, and which are suggested by bosons,
quons and ordinary SUSY quantum mechanics, show that, even in some cases Ran(x) ⊂ H,
equation (4.2) can still be recovered. As a matter of fact, during our analysis we have not
found any example showing that (4.2) is not satisfied, so that we cannot give any conclusion
at the present stage.

Bosons. Let h = a†a =: N, x = (a†)2 and [a, a†] = 11, as in example 2, [1]. We know that
[h, xx†] = 0 and that N1 = x†x = N2 + 3N + 211 is invertible. In [1] we have deduced that
N−1

1 (x†hx) = N + 211. Now, if we fix f (x) = x2 and we compute H = N−1
1 (x†h2x), we get

H = 11 + aa† + N1 = (N + 211)2. If we rather take f (x) = ex we find H = eN+211. More in
general, if f (x) admits a power series expansion, we find that H = f (N + 211). Hence (4.2)
is satisfied, even if Ran(x) ⊂ H. This inclusion follows because, calling ϕ0 the vacuum of
a, aϕ0 = 0, then both ϕ0 and a†ϕ0 are orthogonal to Ran(x).

Quons. Once again we take h = a†a =: N and x = (a†)2, but we consider the following
q-mutation relation: aa† − qa†a = 11, as in [13]. We know [1] that [h, xx†] = 0 and that
N1 = x†x = q3N2 + q(1 + 2q)N + (1 + q)11 is invertible, at least if 0 < q � 1. In [1] we
have obtained that N−1

1 (x†hx) = (1 + q)11 + q2N . Once again, if f (x) admits a power series

9
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expansion, we get H = N−1
1 (x†f (h)x) = f (q2N + (1+q)11), even if Ran(x) is again a proper

subset of H.

Susy quantum mechanics. We consider now the usual Hamiltonian h = a†a =: N , but we
take x = a† and [a, a†] = 2h̄√

2m
W ′(x), where W(x) is the so-called superpotential, h̄ is the

Plank constant (divided by 2π ) and m is the mass of a certain quantum particle. If we assume
that W ′(x) > 0 for all x it is possible to check that our assumptions are all satisfied. If we
further take a generic function f (x), which admits a power series expansion, then we get
H = f

(
a†a + 2h̄√

2m
W ′(x)

)
. Even in this example equation (4.2) is recovered regardless of the

fact that Ran(x) may be a proper subset of H.
Different choices of the operator x trivialize the situation. If we take, for instance, x = a

or x = (a†)2, we deduce that, in order to satisfy our assumptions, W(x) must be linear in x,
and this produces the standard harmonic oscillator, which is not very interesting.

We are therefore left with an open problem: since many choices of x can be done such
that Ran(x) ⊂ H, we wonder whether in some of these cases equation (4.2) is not verified.
We hope to be able to give a final answer in the near future.

5. Conclusions

In this paper we have continued our analysis on SUSY quantum mechanics, intertwining
operators and coherent states began in [1]. As the reader can see, different definitions of
coherent states are given here, in [1] and in other papers on the same subject, see [8, 9] for
instance. In our opinion there is no reasonable way to decide which is the best definition, at
least until no concrete physical application is considered. In other words, a given definition
of the coherent state may be useful for a particular application but not for a different one. No
other general rule does exist.

Also, in section 4 we have given some preliminary results on non-isospectral
Hamiltonians. This topic surely deserves a deeper analysis, also in connection with interesting
alternatives which already exist in the literature, [14, 15], where possible generalizations on
the intertwining operators are considered. The work in [14, 15] seems also to be connected
with the examples considered here involving quons, and we plan to consider in more detail
also this aspect.
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